
LATTICE METHODS IN MODULARITY

ERAN ASSAF

1. Representation Numbers

Let Q(x) =
∑k

i≤j aijxixj ∈ Z[x1, . . . , xk] be a positive definite quadratic form. Write

rQ(n) = #{λ ∈ Zk : Q(λ) = n}.

Question 1.1. Is there a ”nice” formula for rQ(n) ?

Example 1.2 (Jacobi, 1834). Let Q(x) = x2
1 + x2

2 + x2
3 + x2

4. Then

rQ(n) = 8
∑
4-d|n

d.

Jacobi’s original proof, as well as many subsequent proofs, relies heavily on certain
identities he had developed that somewhat obfuscate the underlying ideas. I’ll present
here two different proofs, that will be easier to generalize and have analogues in different
situations.

Proof Sketch. The main line of all these proofs looks as follows.

• Consider θ(q) =
∑∞

n=0 rQ(n)qn.
• Exhibit a f.d. vector space V s.t. θ ∈ V .
• Find a ”nice” basis for V .
• Write θ as a linear combination of basis elements.

Possible choices for V - spaces of elliptic functions or spaces of modular forms. �

Alternatively, one could prove this directly using arithmetic in quaternion algebras.

Proof #2 Sketch. LetB be the (Hamilton) quaternion algebra over Q, namelyB =
(
−1,−1

Q

)
is a 4-dim. algebra over Q with basis {1, i, j, ij} such that i2 = −1 = j2 and ji = −ij. Let
O = Z〈i, j〉 be the (Lipshitz) order generated by i, j. Then

rQ(n) = #{β ∈ O : nrd(β) = n}.
• It turns out that all invertible (sated) O-ideals are principal.
• #O× = 8.

So rQ(n) = 8 · #{I ∈ Cls(O) : nrd(I) = n}. This last quantity is multiplicative, so it is
enough to compute it for prime powers.

• For p 6= 2, we have Op 'M2(Zp), so right ideals of norm pr correspond to submod-
ules of (Z/prZ)2 of index pr.
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• For p = 2, a direct count shows there are exactly 3 such inequivalent ideals.

Multiplying all together yields the result. �

Question 1.3. What about other quadratic forms?

for that we will change our point of view slightly, and talk about lattices.

2. Lattices

Let V be a finite dimensional vector space over Q, and let Q : V → Q be a quadratic
form. Let Λ ⊆ V be an even integral lattice (so that Q(Λ) ⊆ Z). Write T (x, y) =
Q(x+ y)−Q(x)−Q(y) for the associated bilinear form (polar). The discriminant of Λ is
D = disc(Λ) = 2−ε detT ∈ Z, where ε = k mod 2. The level of Λ is the smallest N s.t.
NT−1 is integral with even diagonal. Set

θΛ(q) =
∑
λ∈Λ

qQ(λ) =

∞∑
n=0

rΛ(n)qn,

where rΛ(n) = #{λ ∈ Λ : Q(λ) = n}, and let D∗ = D if 2 - k or D∗ = (−1)k/2D if 2 | k,
and χD(a) =

(
D
a

)
. Then it is a theorem (Freitag, 1983) that

θΛ(q) ∈Mk/2(N,χD∗).

Example 2.1. Let V = Q3, with Q(x, y, z) = x2 + y2 + yz + 3z2 and let Λ = Z3. Then

[T ]B =

 2 0 0
0 2 1
0 1 6

 , B = {e1, e2, e3}.

and similarly

[T ]B′ =

 8 1 6
1 2 1
6 1 6

 , B′ = {e1 + e3, e2, e3}.

Note that det(T ) = 22, so that disc(Λ) = 11. From [T ]−1
B =

 1
2 0

0 1
11

(
6 −1
−1 2

) , we

get that N = 44. Therefore

θΛ(q) = 1 + 4q + 4q2 + 4q3 + 12q4 + 12q5 +O(q6) ∈M3/2(44, χ11).

This observation, other than leading us to ”nice” formulas for representation numbers
and relations between such, leads us to try and consider these generating functions instead
of the lattices. This is a good time to ask the following question.

Question 2.2. Is Λ 7→ θΛ injective?

The answer to this question is clearly ”No”, because if g ∈ O(V,Q) is an isometry
(Q(gv) = Q(v)), then clearly θg(Λ) = θΛ. Let us then refine the question.

Question 2.3. Is [Λ] 7→ θΛ injective when [Λ] is the isometry class of Λ?
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In fact, if Λ ' Π are isometric, they are also locally isometric at every prime p (namely
Λp ' Πp), so we can restrict our attention to smaller sets of lattices. We can write down

Gen(Λ) = {Π ⊆ V : Πp ' Λp∀p}
for the genus of Λ, and Cls(Λ) = Gen(Λ)/O(V ) for its class set. Classical geometry of
numbers shows that Cls(Λ) is finite, and we obtain a well defined map θ : Cls(Λ) →
Mk/2(N,χD∗), which we would like to figure out if it is injective.

Remark 2.4. For those who are more adelically inclined, one could think of the class set

as an adelic double coset for the algebraic group O(V ) as O(V )\O(V̂ )/O(Λ̂).

Example 2.5. The map θ : Cls(Λ)→Mk/2(N,χD∗) is not injective. Indeed, consider the

lattice Dk = {x ∈ Zk : 2 |
∑k

i=1 xi}, and write Ek = Dk +Z · v where v = 1
2(1, . . . , 1) ∈ Qk.

Then disc(E8) = disc(E16) = 1, and θE16 , θE8�E8 ∈ M8(1). But dimM8(1) = 1, hence the
theta series are equal, but in fact these two lattices are not isometric. How does one show
that? One way is to compute sizes of automorphism groups and notice they differ.

Another way to see that these lattices are not isometric is by considering the following
refinement. Instead of creating a generating series by looping over single vectors in Λ, we
will create a multivariate generating series by looping over sets of g vectors in Λ, namely

θ
(g)
Λ (z) =

∑
λ1,...,λg

eπi tr(λ
tTλz),

where z ∈ Hg = {z ∈ Mg(C) : zt = z,=(z) > 0} is in the Siegel upper half-space. Again,
one has a theorem

θ
(g)
Λ ∈M (g)

k/2(N,χD∗),

where this time this is a corresponding space of holomorphic Siegel modular forms (of degree
g) of level N , weight k/2 and character χD∗ . (Sections of an automorphic line bundle on

the moduli space of abelian varieties of dimension g). Still one obtains θ
(g)
E16

= θ
(g)
E8�E8

for

g = 1, 2, 3, since dimS
(g)
8 (1) = 0 for g = 1, 2, 3. But for g = 4 one obtains an inequality.

3. Modular forms

All these previous ideas of working with lattices made use of a map to a finite dimensional
space of (Siegel) modular forms, which is not always well-behaved. But, in fact, we can
form a space of modular forms without losing any information. The space of orthogonal
modular forms of level Λ is

M(Λ) = {φ : Cls(Λ)→ C} ' Ch(Λ).

How did we gain anything from forming this vector space? The idea is that it has an
additional structure. (This was already observed by Kneser in 1956).

A lattice Π ⊆ V is a p-neighbor of Λ, denoted by Π ∼p Λ if Π is integral and [Λ : Λ∩Π] =
p = [Π : Λ ∩Π]. (Draw!).

Lemma 3.1. Π ∼p Λ⇒ Π ∈ Gen(Λ).
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From the theory of invariant factors we deduce that there is a basis e1, . . . , en of Λ such
that 1

pe1, pe2, e3, . . . , en is a basis of Π. Since Π is integral it follows that p2 | Q(e1), so that

p-neighbors are in bijective correspondence with isotropic lines in Λ/pΛ via Π 7→ Fp · e1.

Example 3.2. If k = 3, QFp ' P1
Fp
⇒ #Q(Fp) = p + 1 (for p - ∆), E.g. if Q(x, y, z) =

x2 + y2 + yz + 3z2 ≡ 0 mod 2, then

(x : y : z) ∈ {(1 : 0 : 1), (1 : 1 : 0), (1 : 1 : 1)}
lift to

v ∈ {(1, 0, 1), (1, 1, 2), (1,−1, 1)} (Q(v) ≡ 0 mod 4).

Constructing the 2-neighbor corresponding to (1, 0, 1) = e1 + e3, we recall that

[T ]B′ =

 8 1 6
1 2 1
6 1 6


Dividing the first vector by 2, and multiplying the second one we obtain 2 1 3

1 8 2
3 2 6

 '
 2 1 1

1 2 1
1 1 8


[Draw the neighbors graph - (1 : 1 : 0) keeps Λ1 in place, (1 : 0 : 1) and (1 : 1 : 1)
send it to Λ2, all arrows from Λ2 get sent to Λ1.] That way we get the adjacency matrix

[T2] =

(
1 2
3 0

)
Similarly, one can compute 3-neighbors and 5-neighbors to obtain [T3] =(

2 2
1 3

)
and [T5] =

(
4 2
3 3

)
These adjacency matrices can be extended to linear operators on the vector space

spanned by the isometry classes.

Tp(f)([Π]) =
∑

Λ′∼pΠ

f([Λ′]).

These commute and they are self-adjoint, hence give rise to simultaneous eigenvectors,
which we call eigenforms.

Example 3.3. Returning to the quadratic form Q = x2 + y2 + yz + 3z2, we see that we
have two eigenvectors e = (1, 1) and f = (2,−3). For p 6= 11, we get that Tp(e) = (p+ 1)e
and Tp(f) = apf , where

a2 = −2, a3 = −1, a5 = 1, . . .

In fact,

f(q) = q

∞∏
n=1

(1− qn)2(1− q11n)2 =

∞∑
n=1

anq
n ∈ S2(11)∗.

or, if E : y2 + y = x3 − x2, then ap = p+ 1−#E(Fp) for all p 6= 11.
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Example 3.4. In M(E16), one has φ = (286,−405) satisfying Tpφ = (p4 · p
7−1
p−1 +p7 +τ(p) ·

p4−1
p−1 ), where

∞∑
n=1

τ(n)qn = q
∞∏
n=1

(1− qn)24.

* This is an example of an exceptional isomorphism so3 ' sl2 (B1 = A1). It generalizes
to the following result.

Theorem 3.5 (Birch, Hein, Hein-Tornaria-Voight). If rank(Λ) = 3, D is square-free, then
Sk−2(Λ) ↪→ Sk(D) is Hecke-equivariant (+explicitly describe the image).

Since so4 ' sl2 × sl2 (D2 = A1 ×A1), also get

Theorem 3.6 (A. , Fretwell, Ingalls, Logan, Secord, Voight, 2022). If rank(Λ) = 4 and

rank(Λ/pΛ) ≥ 2 for all p, let F = Q[
√
D], and D = D0N

2, then

S k1+k2
2

,
k1−k2

2

(Λ) ↪→ Sk1,k2(NZF )GalF

is Hecke-equivariant (and explicitly describes the image).

4. L-functions

The spaces Mk(N,χ) also admit Hecke operators Tp and Sk(N,χ) has a basis of eigen-
forms

f =
∞∑
n=1

anq
n a1 = 1,

which give rise to L-functions

L(f, s) =

∞∑
n=1

an
ns

=
∏
p

Lp(f, s) =
∏
p

(1− app−s + χ(p)pk−1−2s)−1

This L-function converges in a right half-plane, and completing to a function Λ(f, s) =

N s/2(2π)−sΓ(s)L(f, s) = (−1)k/2 · ε(f)Λ(f, k − s) where ε(f) ∈ {±1} is a sign that only
depends on f .

The functional equation then allows one to analytically continue the L-function to an
entire function on the complex plane, and consider its values along the critical line (line of
symmetry), and the special point.

By a theorem of Eichler and Shimura (1973), when k = 2, L(f, s) = L(E, s) for some
elliptic curve E/Q. The modularity theorem (2001) states the converse - given an elliptic
curve over Q, there exists a weight 2 modular form giving the same L-function. This
allows one to deduce that the L-functions of these admit holomorphic continuation and
their value at the special point is conjectured to relate to many arithmetic invariants via
the BSD conjecture.

Modularity is explained by a deeper connection between E and f that can be expressed
in terms of representation theory. The fact that E is defined over Q gives us an associated
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Galois representation ρE : GalQ → GL2(Ẑ), which in turn gives rise to an associated L-
series L(ρE , s) = L(E, s). Similarly, f gives rise to an automorphic representation πf of
PGL2, for which L(πf , s) = L(f, s). Modularity then follows from an association between
ρE and πf where the Frobenius Frp on E corresponds to the Hecke operator Tp on f .

For Siegel modular forms f ∈ S(2)
k,j (N,χ) one can also associate an L-series L(f, s).

Conjecture 4.1. (Modularity of Calabi-Yau threefolds) If X is a (rigid) Calabi-Yau three-
fold of conductor N , then there is a Siegel paramodular form f of weight (3, 0) and level
N such that L(f, s) = L(X, s).

In recent work, with Ladd, Rama, Tornaŕıa and Voight, used the exceptional isomor-
phism for rank(Λ) = 5

so5 ' sp4 (B2 = C2)

to build a database of Siegel modular forms of weight 3, matching them up with corre-
sponding varieties X. In a work in progress we prove modularity of these threefolds.

5. Langlands parametrization

Langlands’ reciprocity conjecture relates automorphic representations (of a group G)

and Galois representations (maps from GalQ to the Langlands dual Ĝ). The relation uses
a parametrization of the automorphic representations using conjugacy classes of semisimple

elements in Ĝ which should correspond to the image of Frobenius.

For example, if f ∈ Sk(N,χ) is a modular form of weight k, write ap(f) = p
k−1
2 (αp +

α−1
p ) (= ap(πf )). Then the Satake parameter at p is

cp(πf ) =

(
αp

α−1
p

)
.

Similarly, one can define a Satake parameter at infinity viza

c∞(πf ) = z 7→


(
z
|z| |
) k−1

2 (
|z|
z

) k−1
2

 ∈ SL2(C)

It turns out (an instance of functoriality in the Langlands program) that for any d ≥ 1
there exists an automorphic representation πf [d] of PGL2d with parameters

c∞(πf [d]) = c∞(π)⊗ Symd−1


(
z
|z| |
) 1

2 (
|z|
z

) 1
2

 ∈ SL2d(C)

at infinity and

cp(πf [d]) = cp(π)⊗ Symd−1

(
p

1
2

p−
1
2

)
∈ SL2d(C).

at the finite places. Here, for G = PGL2d, the Satake parameters lie in Ĝ = SL2d(C).
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More generally, we have the following conjecture.

Conjecture 5.1 (Langlands, Arthur, 1989, 2013). Let G be semisimple, r : Ĝ → SLn(C)
a representation. If π ∈ Πdisc(G), then

r(c(π)) = c(π1[d1]⊕ π2[d2]⊕ . . .⊕ πm[dm]).

This includes a further specification of the possible di and conditions on the πi, that explic-
itly describe the image.

Some cases have been proven by Arthur and Täıbi (2015). For the case we are considering
today, of a compact orthogonal group, Chenevier-Lannes (2019) prove some results for
unimodular lattices, which we generalize in the following.

Theorem 5.2 (A., Fretwell, Ingalls, Logan, Secord, Voight, 2022). If 2 | k, φ ∈ M(Λ) is

an eigenform with f = θ(g)(φ) 6= 0, If 2g < k, then c(πφ) = c(πf ⊗ χD∗)⊕ [k − 2g − 1]. If
k ≤ 2g, then c(πf ⊗ χD∗) = c(πφ)⊕ [2g − k].

Consequently, e.g. when 2g < k one obtains

L(φ, s) = L(χD∗ ⊗ f, std, s−
k

2
+ 1) ·

k
2
−1−g∏

i=g− k
2

+1

ζ(s+ i− k

2
+ 1)

Example 5.3. If g = 1 and f =
∑∞

n=1 anq
n, Tpφ = λpφ, then

λp = a2
p − χD∗(p)p

k
2
−1 + p · p

k−3 − 1

p− 1

Example 5.4. If φ ∈M(E16) as before, g = 4, then

c(πφ) = c(τ)[4]⊕ [7]⊕ [1].

Recall φ = (286,−405), e = (1, 1) so that 286e− φ ≡ 0 mod 691,

λp(e) =
p15 − 1

p− 1
+ p7 c(πe) = [15]⊕ [1]

As an application one can show Ramanujan’s congruence that τ(p) ≡ p11 + 1 mod 691.

This is a special case of a more general phenomenon of congruence between forms of
different depths. Harder conjectured the recently proven analogue for Siegel modular forms
of genus 2, namely

Theorem 5.5 (Harder’s conjecture - Atobe, Chida, Ibukiyama, Katsurada, Ysmauchi

2023). If f ∈ Sj+2k−2(1) is an eigenform and q | L(f,k+j)

L(f,k+ j
2

+ε
is a large enough prime of

Q(f), then there exists a form F ∈ S(2)
k,j (1) s.t.

λp(F ) ≡ ap(f) + pj+k−1 + pk−2 (mod q)′

for all p.
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We show instances of an analogue with level in the setting of standard representations.

Theorem 5.6 (AFILSV 2022). Let f ∈ S4(53, χ53). Then there exists F ∈ S(2)
4 (53, χ53)

s.t.
a1,p2(F ) ≡ ap(f)2 − (1 + χ53(p)) · p3 + p5 + p (mod q)

where q | 397 is a prime in Q(F ).

This and other instances lead us to the following conjecture.

Conjecture 5.7. Let f ∈ Sj+k(N,χ) and q | Lalg(Sym2(f), j + 2k − 2), then there exists
F ∈ Sk,j(N,χ) and q′ | q such that

a1,p2(F ) ≡ ap(f)2 − χ(p)pj+k−1 − pj+2k−5 + pj+2k−3 + pj+! (mod q)′

for all p - N .

6. Summary

• Working explicitly with p-neighbors in Cls(Λ) we find systems of Hecke eigenvalues,
• Computational access to L-functions and Galois representations.
• Generalizes to other compact forms of reductive groups.
• The results inform us about the theory: Explicit description of images + phenomena

encountered lead to more precise conjectures.


